I tried to change the cuddn version, but it didn’t work. It should be a matter of memory, as follows:
tensorflow:
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as session:
Hard
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
keras.backend.tensorflow_backend.set_session(tf.Session(config=config))
My environment is cuddn7.6 + cuda10.0 + Python 3.6 2080ti, so it can run
Similar Posts:
- Error in calling GPU by keras or tensorflow: blas GEMM launch failed
- [Solved] Failed to create cublas handle: CUBLAS_STATUS_ALLOC_FAILED
- “Failed to get convolution algorithm. This is probably because cuDNN failed to initialize”
- [Solved] TensorFlow Error: InternalError: Failed copying input tensor
- The solution of CUDA error: out of memory in yolo3 training
- AttributeError: module ‘tensorflow’ has no attribute ‘Session’
- [Solved] Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR
- InternalError: cudaGetDevice() failed. Status: CUDA driver version is insufficient for CUDA runti…
- [Solved] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
- Conda Install Library Error: failed with initial frozen solve. Retrying with flexible solve.